Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 8 de 8
Filter
1.
J Ambient Intell Humaniz Comput ; : 1-10, 2022 Jan 14.
Article in English | MEDLINE | ID: covidwho-20233846

ABSTRACT

MHealth technologies play a fundamental role in epidemiological situations such as the ongoing outbreak of COVID-19 because they allow people to self-monitor their health status (e.g. vital parameters) at any time and place, without necessarily having to physically go to a medical clinic. Among vital parameters, special care should be given to monitor blood oxygen saturation (SpO2), whose abnormal values are a warning sign for potential COVID-19 infection. SpO2 is commonly measured through the pulse oximeter that requires skin contact and hence could be a potential way of spreading contagious infections. To overcome this problem, we have recently developed a contact-less mHealth solution that can measure blood oxygen saturation without any contact device but simply processing short facial videos acquired by any common mobile device equipped with a camera. Facial video frames are processed in real-time to extract the remote photoplethysmographic signal useful to estimate the SpO2 value. Such a solution promises to be an easy-to-use tool for both personal and remote monitoring of SpO2. However, the use of mobile devices in daily situations holds some challenges in comparison to the controlled laboratory scenarios. One main issue is the frequent change of perspective viewpoint due to head movements, which makes it more difficult to identify the face and measure SpO2. The focus of this work is to assess the robustness of our mHealth solution to head movements. To this aim, we carry out a pilot study on the benchmark PURE dataset that takes into account different head movements during the measurement. Experimental results show that the SpO2 values obtained by our solution are not only reliable, since they are comparable with those obtained with a pulse oximeter, but are also insensitive to head motion, thus allowing a natural interaction with the mobile acquisition device.

2.
Arab J Sci Eng ; : 1-9, 2023 Apr 10.
Article in English | MEDLINE | ID: covidwho-2290510

ABSTRACT

Recent years have witnessed the publication of many research articles regarding the contactless measurement and monitoring of heart rate signals deduced from facial video recordings. The techniques presented in these articles, such as examining the changes in the heart rate of an infant, provide a noninvasive assessment in many cases where the direct placement of any hardware equipment is undesirable. However, performing accurate measurements in cases that include noise motion artifacts still presents an obstacle to overcome. In this research article, a two-stage method for noise reduction in facial video recording is proposed. The first stage of the system consists of dividing each (30) seconds of the acquired signal into (60) partitions and then shifting each partition to the mean level before recombining them to form the estimated heart rate signal. The second stage utilizes the wavelet transform for denoising the signal obtained from the first stage. The denoised signal is compared to a reference signal acquired from a pulse oximeter, resulting in the mean bias error (0.13), root mean square error (3.41) and correlation coefficient (0.97). The proposed algorithm is applied to (33) individuals being subjected to a normal webcam for acquiring their video recording, which can easily be performed at homes, hospitals, or any other environment. Finally, it is worth noting that this noninvasive remote technique is useful for acquiring the heart signal while preserving social distancing, which is a desirable feature in the current period of COVID-19.

3.
IEEE Transactions on Instrumentation and Measurement ; 72, 2023.
Article in English | Scopus | ID: covidwho-2246402

ABSTRACT

Blood pressure (BP) is generally regarded as the vital sign most strongly correlated with human health. However, for decades, BP measurement has involved a cuff, which causes discomfort and even carries a risk of infection, given the current prevalence of COVID-19. Some studies address these problems using remote photoplethysmography (rPPG), which has shown great success in heart rate detection. Nevertheless, these approaches are not robust, and few have been evaluated with a sufficiently large dataset. We propose an rPPG-based BP estimation algorithm that predicts BP by leveraging the Windkessel model and hand-crafted waveform characteristics. A waveform processing procedure is presented for the rPPG signals to obtain a robust waveform template and thus extract BP-related features. Redundant and unstable features are eliminated via Monte Carlo simulation and according to their relationship with latent parameters (LSs) in the Windkessel model. For a comprehensive evaluation, the Chiao Tung BP (CTBP) dataset was constructed. The experiment was conducted over a four-week period of time to evaluate the validity period of the personalization in our system. On all the data, the proposed method outperforms the benchmark algorithms and yields mean absolute errors (MAEs) of 6.48 and 5.06 mmHg for systolic BP (SBP) and diastolic BP (DBP), respectively. The performance achieves a 'B' grade according to the validation protocol from the British Hypertension Society (BHS) for both SBP and DBP. © 1963-2012 IEEE.

4.
IEEE Transactions on Instrumentation and Measurement ; : 1-1, 2022.
Article in English | Scopus | ID: covidwho-2192095

ABSTRACT

Blood pressure (BP) is generally regarded as the vital sign most strongly correlated with human health. However, for decades, BP measurement has involved a cuff, which causes discomfort and even carries a risk of infection, given the current prevalence of COVID-19. Some studies address these problems using remote photoplethysmography (rPPG), which has shown great success in heart rate detection. Nevertheless, these approaches are not robust, and few have been evaluated with a sufficiently large dataset. We propose an rPPG-based BP estimation algorithm that predicts BP by leveraging the Windkessel model and hand-crafted waveform characteristics. A waveform processing procedure is presented for the rPPG signals to obtain a robust waveform template and thus extract BP-related features. Redundant and unstable features are eliminated via Monte Carlo simulation and according to their relationship with latent parameters in the Windkessel model. For a comprehensive evaluation, the Chiao Tung Blood Pressure (CTBP) dataset was constructed. The experiment was conducted over a four week period of time to evaluate the validity period of the personalization in our system. On all the data, the proposed method outperforms the benchmark algorithms and yields mean absolute errors of 6.48 mmHg and 5.06 mmHg for SBP and DBP, respectively. The performance achieves a “B”grade according to the validation protocol from the British Hypertension Society for both SBP and DBP. IEEE

5.
Cureus ; 14(11): e31649, 2022 Nov.
Article in English | MEDLINE | ID: covidwho-2203314

ABSTRACT

Background Regularly monitoring common physiological signs, including heart rate, blood pressure, and oxygen saturation, can effectively prevent or detect several potential conditions. In particular, cardiovascular diseases (CVDs) are a worldwide concern. According to the World Health Organization, 31% of all deaths worldwide are from CVDs. Recently, the coronavirus disease 2019 pandemic has increased the interest in remote monitoring. At present, contact devices are required to extract most of an individual's physiological information, which can be inconvenient for users and may cause discomfort. Methodology However, remote photoplethysmography (rPPG) technology offers a solution for this issue, enabling contactless monitoring of the blood volume pulse signal using a regular camera. Ultimately, it can provide the same physiological information as a contact device. In this paper, we propose an evaluation of Vastmindz's rPPG technology against medical devices in a clinical environment with a variety of subjects in a wide range of age, height, weight, and baseline vital signs. Results This study confirmed the findings that the contactless technology for the estimation of vitals proposed by Vastmindz was able to estimate heart rate, respiratory rate, and oxygen saturation with a mean error of ±3 units as well as ±10 mmHg for systolic and diastolic blood pressure. Conclusions Reported results have shown that Vastmindz's rPPG technology was able to meet the initial hypothesis and is acceptable for users who want to understand their general health and wellness.

6.
JMIR Res Protoc ; 12: e41533, 2023 Jan 11.
Article in English | MEDLINE | ID: covidwho-2198148

ABSTRACT

BACKGROUND: Measuring vital signs (VS) is an important aspect of clinical care but is time-consuming and requires multiple pieces of equipment and trained staff. Interest in the contactless measurement of VS has grown since the COVID-19 pandemic, including in nonclinical situations. Lifelight is an app being developed as a medical device for the contactless measurement of VS using remote photoplethysmography (rPPG) via the camera on smart devices. The VISION-D (Measurement of Vital Signs by Lifelight Software in Comparison to the Standard of Care-Development) and VISION-V (Validation) studies demonstrated the accuracy of Lifelight compared with standard-of-care measurement of blood pressure, pulse rate, and respiratory rate, supporting the certification of Lifelight as a class I Conformité Européenne (CE) medical device. OBJECTIVE: To support further development of the Lifelight app, the observational VISION Multisite Development (VISION-MD) study is collecting high-quality data from a broad range of patients, including those with VS measurements outside the normal healthy range and patients who are critically ill. METHODS: The study is recruiting adults (aged ≥16 years) who are inpatients (some critically ill), outpatients, and healthy volunteers, aiming to cover a broad range of normal and clinically relevant VS values; there are no exclusion criteria. High-resolution 60-second videos of the face are recorded by the Lifelight app while simultaneously measuring VS using standard-of-care methods (automated sphygmomanometer for blood pressure; finger clip sensor for pulse rate and oxygen saturation; manual counting of respiratory rate). Feedback from patients and nurses who use Lifelight is collected via a questionnaire. Data to estimate the cost-effectiveness of Lifelight compared with standard-of-care VS measurement are also being collected. A new method for rPPG signal processing is currently being developed, based on the identification of small areas of high-quality signals in each individual. Anticipated recruitment is 1950 participants, with the expectation that data from approximately 1700 will be used for software development. Data from 250 participants will be retained to test the performance of Lifelight against predefined performance targets. RESULTS: Recruitment began in May 2021 but was hindered by the restrictions instigated during the COVID-19 pandemic. The development of data processing methodology is in progress. The data for analysis will become available from September 2022, and the algorithms will be refined continuously to improve clinical accuracy. The performance of Lifelight compared with that of the standard-of-care measurement of VS will then be tested. Recruitment will resume if further data are required. The analyses are expected to be completed in early 2023. CONCLUSIONS: This study will support the refinement of data collection and processing toward the development of a robust app that is suitable for routine clinical use. TRIAL REGISTRATION: ClinicalTrials.gov NCT04763746; https://clinicaltrials.gov/ct2/show/NCT04763746. INTERNATIONAL REGISTERED REPORT IDENTIFIER (IRRID): DERR1-10.2196/41533.

7.
Biomed Signal Process Control ; 75: 103609, 2022 May.
Article in English | MEDLINE | ID: covidwho-1729592

ABSTRACT

Remote photoplethysmography (rPPG), which aims at measuring heart activities without any contact, has great potential in many applications. The emergence of novel coronavirus pneumonia COVID-19 has attracted worldwide attentions. Contact photoplethysmography (cPPG) methods need to contact the detection equipment with the patient, which may accelerate the spread of the epidemic. In the future, the non-contact heart rate detection will be an urgent need. However, existing heart rate measuring methods from facial videos are vulnerable to the less-constrained scenarios (e.g., with head movement and wearing a mask). In this paper, we proposed a method of heart rate detection based on eye location of region of interest (ROI) to solve the problem of missing information when wearing masks. Besides, a model to filter outliers based on residual network was conceived first by us and the better heart rate measurement accuracy was generated. To validate our method, we also created a mask dataset. The results demonstrated that after using our method for correcting the heart rate (HR) value measured with the traditional method, the accuracy reaches 4.65 bpm, which is 0.42 bpm higher than that without correction.

8.
Sensors (Basel) ; 21(24)2021 Dec 14.
Article in English | MEDLINE | ID: covidwho-1598728

ABSTRACT

Camera-based remote photoplethysmography (rPPG) is a low-cost and casual non-contact heart rate measurement method suitable for telemedicine. Several factors affect the accuracy of measuring the heart rate and heart rate variability (HRV) using rPPG despite HRV being an important indicator for healthcare monitoring. This study aimed to investigate the appropriate setup for precise HRV measurements using rPPG while considering the effects of possible factors including illumination, direction of the light, frame rate of the camera, and body motion. In the lighting conditions experiment, the smallest mean absolute R-R interval (RRI) error was obtained when light greater than 500 lux was cast from the front (among the following conditions-illuminance: 100, 300, 500, and 700 lux; directions: front, top, and front and top). In addition, the RRI and HRV were measured with sufficient accuracy at frame rates above 30 fps. The accuracy of the HRV measurement was greatly reduced when the body motion was not constrained; thus, it is necessary to limit the body motion, especially the head motion, in an actual telemedicine situation. The results of this study can act as guidelines for setting up the shooting environment and camera settings for rPPG use in telemedicine.


Subject(s)
Photoplethysmography , Telemedicine , Algorithms , Heart Rate , Motion
SELECTION OF CITATIONS
SEARCH DETAIL